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Spectral multigrid methods for elliptic problems with Dirichlet and periodic boundary con- 
ditions are examined. The multigrid convergence is improved by certain line relaxation techni- 
ques which are suggested by a smoothing analysis. Furthermore several choices of relaxation 
parameters are compared. Numerical results are presented showing the gain in efficiency and 
accuracy over previous methods. 0 1988 Academic Press, Inc. 

1. INTRODUCTION 

Spectral methods [S, 111 give very accurate approximations for smooth solutions 
of elliptic problems with relatively few degrees of freedom. The matrices involved 
are full (and nonsymmetric) and efficient iterative methods for the solution of the 
spectral systems are necessary. Above all pseudospectral (or collocation) methods 
can be implemented very efficiently with fast Fourier transforms [15, 161. 

Zang et al. [19, 201 introduced multigrid techniques for the fast solution of spec- 
tral problems. Brandt et al. [2] have significantly improved spectral multigrid 
methods for periodic elliptic problems. Streett et al. [13] investigated combined 
Dirichlet and periodic problems and applied them to the transonic flow. They used 
alternate direction implicit (ADI) methods for relaxation. We achieved some 
improvements for both Dirichlet and combined Dirichlet/periodic problems. This 
was done by employing certain (alternating) line relaxation techniques (see also [2, 
14, 171). Furthermore we show that minimal residual relaxation [3] speeds up the 
convergence and also yields good results for problems far removed from Poisson’s 
equation. 

In Sections 2 and 3 we give the pseudospectral and finite difference discretizations 
for the Dirichlet problem. The smoothing analysis of Section 4.1 reveals the 
anisotropic behaviour of the discrete problems and suggests suitable defect correc- 
tions. For this purpose different incomplete LU-decompositions [9, 171 (applied in 
an alternating manner) and alternating zebra line relaxation (ZLR) [14] are 
described in Section 4.2. Furthermore several choices of relaxation parameters are 
discussed in Section 4.3. The numerical results in Section 5 show the improved con- 
vergence of our methods. In Section 6 some examples introduced by Haidvogel and 
Zang [6] are solved using full multigrid techniques L-143. As shown in Section 7 the 
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preceding ideas can also be successfully adopted to combined Dirichlet and periodic 
problems. Here we investigate both rectangular and annular Chebyshev-Fourier 
methods. 

Altogether the results presented show the effectiveness of a suitable precon- 
ditioning. They further substantiate the usefulness of spectral multigrid methods. 

2. PSEUDOSPECTRAL DISCRETIZATION 

We consider the elliptic problem 

Lu = - (au,), - (bUJy = f (2.1) 

on the region D = ( - 1, 1)2 with the Dirichlet boundary condition u = g on 8s2. 
Hereby a, b, f denote given functions. 

For the discretization products of Chebyshev polynomials t,(x) f4( y) = 
cos(p arccos X) cos(q arccos y) for p, q = 0, 1, . . . . N are employed. The grid points 
are 

for i, j= 0, 1, . . . . N. 

We introduce the grids 

Q, = ((xi, yj): i, j=O, . . . . N}, Q,=SZn~,,iX2,=ai2nQN. 

BY (4 A E 10, 0-w. LN or b,) 
G@,) Crew. G(QN) 

we mean that (xi, yj) ED,,, (resp. s2, or 852,). 
or G(X?,)) denote the set of grid functions defined on 0, 

(resp. Q, or as2,). For the components of the grid functions v,,, E G(DN) we use the 
abbreviation uy = o,(xi, yj) ((i, j) E ZsI,). Let the fixed grid functions fN E G(IR,), 
g, E G(&2,) be defined by fij= f(xi, yj), ((i, j)~l~,), gy= g(x,, yj) ((i,j)EZ,,,). 
The pseudospectral discretization of (2.1) leads to a discrete problem of the form 

L,u, = fN on QN, uN = g, on aaN, 

where L, denotes the known spectral matrix as introduced in [19]. 

3. THE FINITE DIFFERENCE DISCRETIZATION 

In connection with the defect correction we need a finite difference discretization 
of the operator L. For this purpose we introduce the live point difference star 

((i,AEZ,,) (3.1) 
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with 

$j= -/3/Qj, fi= l/(2 sin(7r/2N) sin(n/N)) 

and 

I%$ = WL (Yj + Y,+ J2YMU+ 1/2)7dW sin(NN)), 

Pi,'- 1 = b(Xi, (Yj + yj-, )/2)/(sin((j- 1/2)X/N) sin(jrc/N)), 

/I’-‘,,, = a((x, + xj+, )/2, JJ,)/(sin((i + 1/2)K/N) sin(i?r/N)), 

/?:;‘,=a((x, +xi-,)/2, yj)/(sin((i- 1/2)7r/N)sin(i~/N)), 

p;,i, = - (/wl,, + p:;i, + a;;;’ + /qj/ 1). 

Corresponding difference operators L& : G(B,) + G(Q,) and e!&,: 
G(Q,) + G(Q,) are defined by 

(L~&#J== L$l,, (L;1(,w,yJ= L$w% ((i, i) E In,) 

with uN E G(Q,), wN E G(Q,) and w”, = w,(O,,,), w”, = 0 (da,). 
The above discretization is the usual five point star for the Chebyshev-Lobatto 

points where addition theorems are used to get numerically stable formulas. 
Although the collocation points are not equidistant it is still second order (see [S]). 

4. RELAXATION SCHEME 

Central to the multigrid method is the relaxation scheme used to smooth the 
error on each grid. We use a Richardson (or Euler) scheme [18] combined with 
defect correction. 

If some approximation ii, E G(a,), ii, = g,(aQ,) of uN is given, the calculation 
of a new approximation ii, E G(Q,), ii, = g,(alR,) proceeds as follows: 

(1) Defect computation: aN = fN - L,G,. 

(2) Defect correction: Compute an approximation 6, to the exact solution of 

LPD!,u, = &(9,), UN = O(dQN). (4.1) 

(3) Richardson step: ii, = ii,,, + 06, with a parameter o. 

As the defect correction requires homogeneous boundary conditions the relaxation 
transfers the boundary values of the start approximation to the new approximation. 
Consequently, if at the beginning of the iteration the exact boundary values are set 
they are kept until the end. For the given simple Dirichlet problem the described 
treatment of boundary conditions seems to be advisable since the problems of 
boundary relaxation [ 1 ] are avoided. 
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Relaxations for spectral problems are only efficient if fast (Fourier) transforms 
are avalable. For this purpose the Richardson scheme in contrast to other methods, 
used for finite difference or finite element problems, is well suited. 

The necessity of a defect correction becomes already obvious in the one-dimen- 
sional case for the operator Lu = -u”. The condition number of the spectral matrix 
increases like O(N4) and the corresponding multigrid condition number of O(N2) is 
unacceptable. For preconditioning with the three point star, Haldenwang et al. [7] 
have computed the resulting eigenvalues. The extreme ones are Amin = 1, II,,, = 
N(N- 1) sin2(rc/2N) and hence I,,. approaches 7r2/4 for increasing N. 

However, the defect correction should not be too expensive. In this context, finite 
difference and finite element methods are recommended. 

4.1. Smoothing Analysis 

A rigorous local mode analysis as for periodic problems (see Brandt et al. [2]) is 
not possible since the eigenvectors of the spectral matrix are not known. 
Nevertheless a local consideration of the spectral operator applied to the 
Chebyshev grid functions yields a useful insight. Let tk,l;N E G(Q,) (k, I= 0, . . . . N) be 
given with components t&, = t,(xJ tl(yj) (i, j= 0, . . . . N) (tk(x) = cos(k arccos x)). 
When the coefficients a and b are constant we get in (i, j) E I,, 

(Lsptk,l;Nli3j= sin2~~n,N) k2 + sin2(:n,N) f2) t/c(xi) tdyj) 

-(acosg,/sin3(E))ki,(x,)r,(yj) 

- (b cos$/sin’ ($)) It,(xi) ?,(y,) 

with Z,(x) = sin(l arccos x) (I = 0, . . . . N). It becomes obvious that the coefficients in 
front of the global dominant terms k2 and l2 may locally attain quite different 
values, in so far as the spectral problem is anisotropic and the weighting of direc- 
tion changes locally. The same observation can be made for the finite difference 
operator. Here we get 

(LCD tkJ..p = 
a 1 - cos(kn/N) 

sin2(in/N) - sin2(z/2N) 1 - cos(n/N) 

b 
+ sin2(jn/N) - sin2(x/2N) 

1 - cos( lx/N) 
1 - cos(rr/N) )) 

fk(Xi) t/(Yj) 

a cot( in/N) 
-sin2(in/N) - sin2(n/2N) 

( siP(knlN)) ik(xi) t,(yj) 
sm(rr/N) 

b cot(jn/N) 
- sin2(jrr/N) - sin2(n/2N) 

( sin(*n’N)) t,(xJ i,(yj). 
sin(rr/N) 
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Therefore an alternating smoothing technique for defect correction seems to be 
useful. For an exact defect correction the quotient of the above dominant terms 
determines the spectrum of eigenvalues. By “freezing” it at a certain fixed point of 
Sz, the asymptotic bounds 1 and 7r2/4 can be derived. If only high frequencies are 
taken into account this interval can be reduced somewhat but the parameters then 
depend on a, b locally and the resulting improvement is small. 

4.2. Richardson Relaxation Techniques 

4.2.1. Stationary Richardson (SR) and Nonstationary Richardson (NSR) Relaxation 

For the SR relaxation the parameter w  is the same for all sweeps. It is known 
that the optimal parameter mOpt and smoothing rate pLopt are 

8 
w opt =- A 0.5768, 

X2-4 

X*+4 PLopt =- G 0.4232. 
x2+4 

For the NSR relaxation [ 131 with k different parameters the optimal ones are 

7c2+4 
w I.opt = - 8 + 

$-f,,, (TX))-’ (I= 1, . . . . k) 

with smoothing rate 

Table 1 shows pk,opt for k = 1, 2, 3, 4, 5. In the applications we choose k = 3 since 
the additional work for greater k is not paying. 

4.2.2. Minimal Residual Richardson (MRR) Relaxation 

Canuto and Quarteroni [3] have already tested the MRR relaxation as an 
iterative method. We examine its smoothing properties in connection with spectral 
multigrid methods. The parameter w  is chosen in order to minimize the residual 
a, = fN - L,U, of the new approximation U, in the norm 11 I 11, defined by 

N-l 

li”N 11 = t”,, ON)“* with (u,, w,)= N-* c v$iw~. 
i.j= 1 

k 

kf.opt 

TABLE I 

Smoothing Rate p(k,opt for k = 1, 2, 3, 4, 5 

1 2 3 4 5 

0.4232 0.3136 0.2797 0.2640 0.2550 
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If a start approximation ii, with the residual aN = f,+, - L,ii, is given, one 
iteration step proceeds as follows: 

(1) De&t computation: Compute the correction UN as in (4.1). 

(2) Parameter computation: o = (&,, w,)/(w,, wN) with wN = L,V,. 

(3) Richardson step: Compute the new approximation iiN and residual J,: 

UN = ii, + WV,, ;s, =aN -cowN. 

In comparison with the relaxation in Section 4.2.1 the additional work of com- 
puting the adaptive parameters becomes obvious. In the numerical experiments 
(Sect. 5) this choice of parameters yields good convergence rates also for problems 
being far removed from Poisson’s equation. 

4.3. Defect Correction 

In previous works [12, 19, 201 above all incomplete LU (ILU)-decompositions 
of 2, have been proposed. In [12] the ILU-decomposition with seven diagonals 
turned out to be the best preconditioner. Furthermore the local mode analysis in 
Section 4.1 suggests a correction which smoothes in an alternating manner. 
Therefore we propose the use of alternating ILU-decompositions or alternating 
zebra relaxation (AZR). AZR was already recommended by Brandt et al. [2] for 
periodic problems with anisotropicity. 

4.3.1. Incomplete LU (ILU)-Decompositions 

Different LU-decompositions result from different numeration techniques in con- 
structing the matrix 2, from the difference operator z&. If we numerate linewise 
beginning at (1, 1) E Z,, we call it ILUWN; if we numerate columnwise beginning 
at (N- 1, ~)EZ~~ we call it ILUNO. For the star L’,j as in (3.1) the stars L’J 
and Rhj N - f!NoN -RN are deduces’ 2:; of the decomposition satisfying 2, - D D ID 
ILUWN we get 

and 
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where 

For ILUNO we get 

and 

where 

R i;j’ = i- +i 0 0 0 0 I.-2 0 0 0 0 0 rf{ d 0 0 0 I , 

and 

r;$ = lf(u6: l.i+ 1, +j 
I . . -, -2 =ly,ui”;!l , . 

In both cases components belonging to boundary points are set to zero. The defect 
correction with ILUWN or ILUNO proceeds as follows: 
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(1) Computation of wN E G(O,) by 

(2) Computation of I?~EG(~~~), U=,v =0 (XJ,,,) by 

u;v=N = w  N’ 

If in the difference operator the x-direction (y-direction) prevails also the entries of 
the rest matrix of ILUWN (ILUNO) become large. Hence if the x-direction 
(y-direction) becomes dominant the smoothing effect of ILUNO (ILUWN) is 
utilized. In connection with multigrid methods ILUWN is employed before and 
ILUNO after coarse grid correction. 

Furthermore we remark that “alternating” ILU needs twice the amount of pre- 
computations. Therefore we recommend to compute the factorizations once and 
store them. 

4.3.2. Zebra Line Relaxation (ZLR) 

Another appropriate smoother is the alternating direction line relaxation. One 
first relaxes along lines of constant y and then an analogues sweep along lines of 
constant x. By solving first for the odd (“white”) lines and then for the even 
(“black”) lines we attain the alternating ZLR. After scaling the ith row by sin(ix/N) 
the tridiagonal linear systems become symmetric and can easily be solved by means 
of a Cholesky decomposition. A more detailed description of ZLR is given in 
CL 21. 

5. CONVERGENCE 

We consider a spectral multigrid algorithm which consists of a relaxation scheme 
as in Section 4.2 and transfer operators for restriction and interpolation as in [ 193. 
In order to estimate its convergence properties we compute the spectral radius p of 
the multigrid operator by means of the power method [4]. Since MRR yields 
oscillating rates we present here a suitable mean value. A convergence factor which 
is related to the work W can be defined by p w  = pi”? The standard work unit is 
the amount of work involved in one relaxation sweep on the finest grid. In the 
numerical computation we use a V-cycle with the grids fid, Sz,, 52i6, a,, and fixed 
numbers vi and v2 of relaxations on each grid in the downward and upward 
branches, respectively. Hence we get W=(l + l/4+ l/16+ 1/64)(v, +v,)= 
1.328125(v, +v2). p,,, does not take the total work into account but it should be 
near the smoothing rate and provide an estimate of efficiency which is independent 
of both the computer and the programmer. 

The following modifications of the multigrid method were investigated: 

- type of relaxation: SR, NSR, or MRR 
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TABLE II 

p w for Example (1) Relative to the Cases (a) and (8) 

(Go AZR ILU2 ILUl (P) AZR ILU2 ILUl 

SR 0.9641 0.9090 0.9103 SR 0.4811 0.5120 0.5553 
NSR 0.9602 0.8990 0.9005 NSR 0.3993 0.3943 0.4452 
MRR 0.8305 0.8766 0.8000 MRR 0.3927 0.4256 0.4001 

- type of defect correction: AZR, ILUl ( = ILUWN) or ILU2 
( = ILUWN/ILUNO). 

Depending on the above modifications we have made good experience with 
different numbers of sweeps: 

v, =v2 =2 for SR and MRR 

v, =3,vz=o for NSR with AZR 

v, = 3, VI = 3 for NSR with ILUl, ILU2. 

We tested examples with coefficients a, b given by 

(1) 4x, y)=b(x, y)= 1 

(2) a(x, y) = b(x, y) = 1+ e exp(cos(n(x + y))) 

(3) 4x, Y) = 1+ e exp(x), W, y) = 1+ E exp(y), 

where EE (0.1, 0.2, 0.3). 

TABLE III 

pw for Example (2) 

Relaxation 

SR 

NSR 

MRR 

Defect 
correction 

AZR 
ILU2 
ILUI 

AZR 
ILU2 
ILUl 

AZR 
ILU2 
lLU1 

&=o.l E = 0.2 E = 0.3 

0.5546 0.6552 0.7382 
0.5623 0.6571 0.7388 
0.6564 0.7543 0.8381 

0.4724 0.6030 0.7038 
0.4142 0.5848 0.6947 
0.5966 0.7191 0.8179 

0.4198 0.4471 0.4769 
0.4310 0.4668 0.4790 
0.4249 0.5295 0.5331 
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The problems considered in (1) and (2) are isotropic whereas the problems con- 
sidered in (3) are anisotropic. Here E measures the departure of the coefficients from 
constant and in (3) also the amount of anisotropicity, with (a/b),,, = (b/a),,, = 
(1 + se)/( 1 + se- ’ ). For example (1) the rates p W are listed in Table II relative to the 
cases 

(a) relaxation without coarse grid correction 

(/I) multigrid iteration (v-cycle). 

Of course the multigrid method yields considerably better results than relaxation 
only. For the V-cycle with SR or NSR relaxation the alternating defect correction 
AZR and ILU2 are superior to ILUl. The MRR relaxation leads to rates being 
similar to the NSR relaxation where the roles of ILUl and ILU2 have changed. 
The rates p ,+, for the examples (2) and (3) are listed in the Tables III and IV. In 
example (2) the oscillation of the coefficients leads to quite bad rates for increasing 
E. This could only slightly be improved by “filtering” the coefficients [20]. Once 
more the reported results substantiate the usefulness of alternating defect correc- 
tions. 

For the MRR relaxation this is not true in general. The corresponding choice of 
parameters seems to be so good that the smoothing effect cannot be improved. 
Above all it is remarkable that the rates hardly deteriorate for increasing E. The 
MRR parameters are better suited for non-Laplacian operators than the others. 
This is due to the fact that the parameters of the SR and NSR relaxation are deter- 
mined by a smoothing analysis of the Laplace operator. In the isotropic case the 
rates for AZR and ILU2 are nearly identical whereas in the anisotropic case AZR 
yields the best results. The reason for this observation is due to the fact that AZR 
needs one and ILU2 two sweeps for smoothing in an alternating manner. Concern- 

TABLE IV 

pw for Example (3) 

Relaxation 

SR 

Defect 
correction 

AZR 
ILU2 
ILUl 

&=o.l c=0.2 &=0.3 

0.5132 0.5386 0.5592 
0.5446 0.5706 0.5919 
0.5858 0.6101 0.6301 

AZR 0.3936 0.4293 0.4654 

NSR ILU2 0.4256 0.4711 0.5048 
ILUl 0.4955 0.5319 0.5602 

AZR 0.4025 0.4044 0.4130 
MRR ILU2 0.4086 0.4124 0.4184 

ILUl 0.409 1 0.4137 0.4188 

581/77/l-12 
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ing the work of decomposition and correction the AZR- and ILU-techniques are 
comparable. The alternating ILU needs twice as much work for the decomposition. 
If the decompositions are stored once this is not very costly. 

Altogether we conclude that the MRR relaxation using AZR is the best choice for 
all examples tested. If L is not too far removed from the Laplace operator the NSR 
relaxation also yields satisfying results. Furthermore this work shows that alter- 
nating defect corrections improve the convergence of spectral methods for Dirichlet 
problems. 

6. EXAMPLES 

For some examples introduced by Haidvogel and Zang [6] we investigate the 
convergence properties first of the V-cycle itself and second of the V-cycie within a 
full multigrid (FMG) iteration [14]. The number of cycles needed to reach the 
respective accuracy of the discretization is computed numerically. For the FMG 
iteration we used the same number of V-cycles on all grids. The FMG interpolation 
is the same as for the V-cycle. Furthermore we employ the NSR relaxation and 
AZR for defect correction. 

By executing a sufficient number of multigrid steps we compute the absolute dis- 
cretization errors between the exact solution u and the calculated solution uN using 
the norms 

Hereby II . II max denotes the maximum norm (on 0,). Then we count the number IT 
of V-cycles needed in order to achieve an accuracy of I~u$~) - u,,, II < E2 for the new 
approximation UK=). ZT, denotes IT for the V-cycle only; ZTFMG denotes IT within 
FMG. 

In all cases we started with the zero grid function. Now the convergence rate can 
be measured by the mean value [2] p = ( IlugrJ - uN l//l/u,., I/ )l”‘T The corresponding 
convergence factor per work unit is given by pw = pi’? Instead of pw we write p’$ 
for the V-cycle and &?‘” for the FMG iteration. 

We examine certain Poisson equations introduced in [6] which were solved by 
means of Lanczos’ tau method [lo]. 

Example ( 1): 

-du(x, y) = 32 ‘sin(4nx) sin(4rry) ((x, y) E Q) 

44 y) = 0 ((4 Y) E 852). 

Example (2): 

-4% v) = 1 ((-5 Y1Ef.J) 

4x, Y) = 0 ((4 Y) E 80). 
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Example (3): 

-mx, Y) = 4x1 U(Y) + 4x) W(Y) ((XT Y) E Q) 
4-T Y) = 0 ((4 Y) E dQ), 

where 

u(x) = 
i 

- 4 (x + 1 ), x<o 
;X2-+X-;, x>o 

and 

The results for the examples are presented in Table V. 
The three examples differ in the smootheness of the exact solution. The solution 

of the tirst example is analytic whereas the others have singularities. In example (2) 
the irregularity occurs near the four corners and in example (3) along both coor- 
dinate axes. A more detailed discussion of the examples is given in [6]. The num- 

TABLE V 

Numerical Results for the Examples in Section 6 

Example ( 1) 

N E2 EM IT, PL IT,,, 
-FM0 
Pw 

8 1.66 6.36 1 0.3208 1 0.3877 
16 2.23E- 3 5.25E- 3 2 0.3648 2 0.4564 
32 7.74E- 13 2.17E- 12 7 0.3742 7 0.4743 

Example (2) 

N E2 EM ITv PL ITFMG 
-FM0 
PW 

8 7.OOE - 6 1.61E-5 3 0.3543 2 0.2360 
16 1.73E- 7 7.47E - 7 4 0.3432 2 0.2011 
32 5.316-9 5SlE- 8 5 0.3595 2 0.1547 

Example (3) 

N E2 EM ITv PII IT,,,  
-FM0 
PW 

8 2.83E-4 l.M)E-3 2 0.3234 2 0.3589 
16 6.52E - 5 2.82E - 4 2 0.3403 2 0.3983 
32 1.69E- 5 9.05E - 5 2 0.3336 2 0.3998 
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bers IT,, ZTFMG depend on the respective accuracy. For example (2) the FMG 
iteration is very effective since the lower level grids give good approximations to the 
liner grids. 

A direct comparison with the tau method in [6] shows that the pseudospectral 
discretization yields a higher accuracy. 

7. CHEBYSHEV-FOURIER PROBLEMS 

We consider two kinds of elliptic problems. The first one is the rectangular 
Chebyshev-Fourier problem. For given functions a, b, f it is given by 

$-(aLu)+$(b$u)=/ on sZ=(-1,1)x(0,271) (7.1) 

with combined Dirichlet and periodic boundary conditions. 
The second one is the annular Chebyshev-Fourier problem, given by 

$(ra$u)+g(iaiu)f on G=(r,,r,)x(O,2n), (7.2) 

where 1 Q r0 < rl < co, with radial boundary conditions, i.e., Dirichlet at r = rl and 
Neumann (or Direchlet) at r = rO. In 9 we prescribe periodic boundary conditions. 
Such problems arise from annular Poisson equations which are transformed using 
polar coordinates (r, 9). By means of a change of variable we get a/& = 
(2/(r, - rO))(a/ax) for r E (r,,, rl), x E ( - 1, 1) and it is sufficient to consider problem 
(7.1). 

For the discretization we use in x resp. r Chebyshev polynomials and in y resp. 9 
trigonometric polynomials. The corresponding grid points are given by 

resp. 

(ri, gj)= 
( 
~+~cos(~),?$f) for i, j=O ,..., A? 

The way of discretization is straightforward and the details can be taken from 
Zang et al. [ 191. In contrast to [ 193 we use in the direction of periodicity the “mid- 
point discretization” introduced by Brandt et al. [2]. By this approach the infor- 
mation in the highest mode is retained and an improved accuracy can be attained. 
Moreover we treat the Dirichlet (Neumann) boundary conditions in an explicit 
manner since the implicit treatment gives much larger spectra of eigenvalues (see 
C31). 
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TABLE VI 

pW for Problem (7.1) 

& 0.0 0.1 0.2 

SR 0.5049 0.5734 0.6354 
NSR 0.4105 0.5039 OS672 
MRR 0.4326 0.4539 0.4844 

The smoothing analysis shows that for isotropic problems the direction of 
Direchlet boundary conditions is dominant and an exclusive smoothing into this 
direction is enough. A further step in azimuth gives only an improvement for 
anisotropic problems or when there are many more grid points in the Fourier direc- 
tion than in the Chebyshev one (such as for the airfoil problem studied in [13]). 

Since ZLR yields similarly good results as ILU but is not so costly in calculating 
the decompositions we are concerned with it furthermore. For problem (7.1) it 
consists of relaxing along lines of constant x by solving 

4vwi +-q-l), .Yj) - 4 1/2(xi + xi- 117 Yj) 

Si- 112s; 
vLI j- 

’ ( si- 1/2si 

+ a(1/2(xi + xi+ 113 .Yj) + Hxi, Yj- I/*) 

si+ l/Zsi (27N2 

+ hxi, Uj+ I/*) 

1 

ujy + a(1/2(xi + xi+ 1)~ Yj) - 

(27~/N)~ ‘*’ si+ l/Zsi 
‘?+ l,j 

= ‘rj - 
b(xi9 Yj- 112) Mxi9 Y j+  112) N 

(2n,~)2 vC- I - (24~~2 ‘hi+ 1 

with sit ,,2 = sin((i+ 1/2)7r/N), si = sin(ilr/N) for the gird function VN. vN denotes 
the old grid approximation. Vectorization is achieved by solving first. for the odd 
(“white”) and then for the even (“black”) lines, resulting in ZLR. After scaling the 
ith row by si the tridiagonal systems become symmetric and can easily be solved by 

TABLE VII 

pW for Problem (7.2) with Mixed Dirichlet 
and Periodic Boundary Conditions 

E 0.0 0.1 0.2 

SR 0.5033 0.5705 0.7043 
NSR 0.4172 0.4781 0.6472 
MRR 0.4341 0.4581 0.4820 
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TABLE VIII 

pw for Problem (7.2) with 
Mixed Dirichlet/Neumann and 
Periodic Boundary Conditions 

E 0.0 0.1 0.2 

SR 0.5142 0.6040 0.6715 
NSR 0.4504 0.5231 0.6158 
MRR 1.0000 1.0000 1.0000 

means of a Cholesky decomposition. In the case of Neumann boundary conditions 
at r = r,, the left sided difference quotients is given by 

(l/2 sin2(7c/2N))($- ,,i - fi&) = INN,,. 

After a suitable scaling of this row the corresponding tridiagonal systems also 
become symmetric. For problem (7.1) resp. (7.2) we tested examples with variable 
coefficients, given by 

a(x, y) = b(x, y) = 1 + E exp(cos(j?(nx + y))) 

resp. 

a(r, 9) = 1 + E exp(cos(/?(r + 9))) 

for p= 108, EE (0.0, 0.1, 0.2) and r0 = 1, r, = 5. The rates pW for problem (7.1) are 
listed in Table VI. Table VII resp. Table VIII contain the results for problem (7.2) 
with mixed Dirichlet resp. Dirichlet/Neumann and periodic boundary conditions. 

The results show the improvements by NSR and MRR relaxation. MRR 
relaxation yields also good results for problems far removed from Poisson’s 

TABLE IX 

Numerical Results for the Examples (lH3) in Section 7 

Example 

1 

2 

3 

N EM E2 IT” PW 

8 8.14E-2 3.396 - 2 1 0.3215 
16 1.21E-4 4.19E- 5 3 0.3740 
32 2.366- 12 8.92E- 13 8 0.3954 

8 6.96E - 2 2.37E - 2 1 0.3464 
16 9.496 - 5 3.67E - 5 3 0.3538 
32 2.25E- 12 7.33E- 13 8 0.3847 

8 2.39E - 1 6.87E-2 2 0.4532 
16 l.O9E-4 3.09E- 5 4 0.4731 
32 2.36E- 12 7.99E - 13 10 0.475 1 
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equation. The convergence behaviour is stable for increasing E and the rates are less 
than 0.5 for the problems in Tables VI and VII. In the case of Neumann boundary 
conditions the rate is equal to one due to the fact that the symmetric part of the 
spectral matrix is indefinite [3]. 

For some examples introduced by Streett et al. [ 133 we show in Table IX the 
accuracy of spectral methods. We consider the Poisson equation, i.e., a = b = 1, and 

(I) u(x, v) = sin(lrx -t- n/4) sin(rc cos(y) + 7r/4) for problem (7.1). 

(2) ~(r, 9) = sin(nr) sin(n cos($) + n/4) for problem (7.2) with Dirichlet boun- 

dary conditions at r = 1 and r = 5. 

(3) u(r, 8) = cos(nr) sin(n cos(9) + n/4) for problem (7.2) with Neumann 
boundary conditions at r = 1. 

The numerical results are given for the Y-cycle with NSR relaxation. The notations 
are in common with Table V. 

We remark that a direct comparison with the convergence rates in [13] is not 
possible. Streett et al. [13] used the “equivalent smoothing rate” which takes into 
account all the work of the multigrid method. 

Altogether the results presented further substantiate the usefulness of line 
relaxation in spectral muitigrid methods, It is obvious that these techniques can 
also be successfully adopted to the more complicated problems of transonic flow. 
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